Integrative genetic risk prediction using non-parametric empirical Bayes classification.
نویسنده
چکیده
Genetic risk prediction is an important component of individualized medicine, but prediction accuracies remain low for many complex diseases. A fundamental limitation is the sample sizes of the studies on which the prediction algorithms are trained. One way to increase the effective sample size is to integrate information from previously existing studies. However, it can be difficult to find existing data that examine the target disease of interest, especially if that disease is rare or poorly studied. Furthermore, individual-level genotype data from these auxiliary studies are typically difficult to obtain. This article proposes a new approach to integrative genetic risk prediction of complex diseases with binary phenotypes. It accommodates possible heterogeneity in the genetic etiologies of the target and auxiliary diseases using a tuning parameter-free non-parametric empirical Bayes procedure, and can be trained using only auxiliary summary statistics. Simulation studies show that the proposed method can provide superior predictive accuracy relative to non-integrative as well as integrative classifiers. The method is applied to a recent study of pediatric autoimmune diseases, where it substantially reduces prediction error for certain target/auxiliary disease combinations. The proposed method is implemented in the R package ssa.
منابع مشابه
Bankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملParametric Empirical Bayes Test and Its Application to Selection of Wavelet Threshold
In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the p...
متن کاملA novel means of using gene clusters in a two-step empirical Bayes method for predicting classes of samples
MOTIVATION The classification of samples using gene expression profiles is an important application in areas such as cancer research and environmental health studies. However, the classification is usually based on a small number of samples, and each sample is a long vector of thousands of gene expression levels. An important issue in parametric modeling for so many gene expression levels is th...
متن کاملApplication of Non Parametric Empirical Bayes Estimation to High Dimensional Classification
We consider the problem of classification using high dimensional features’ space. In a paper by Bickel and Levina (2004), it is recommended to use naive-Bayes classifiers, that is, to treat the features as if they are statistically independent. Consider now a sparse setup, where only a few of the features are informative for classification. Fan and Fan (2008), suggested a variable selection and...
متن کاملPredictive Ability of Statistical Genomic Prediction Methods When Underlying Genetic Architecture of Trait Is Purely Additive
A simulation study was conducted to address the issue of how purely additive (simple) genetic architecture might impact on the efficacy of parametric and non-parametric genomic prediction methods. For this purpose, we simulated a trait with narrow sense heritability h2= 0.3, with only additive genetic effects for 300 loci in order to compare the predictive ability of 14 more practically used ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 73 2 شماره
صفحات -
تاریخ انتشار 2017